Smooth and locally sparse estimation for multiple-output functional linear regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Smooth and Locally Sparse Estimator for Functional Linear Regression via Functional SCAD Penalty

Zhenhua Lin1, Jiguo Cao2, Liangliang Wang3 and Haonan Wang4 1Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada. Email: [email protected] 2Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada. Email: [email protected] 3Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada. Email: l...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Locally Sparse Estimator for Functional Linear Regression Models

A new locally sparse (i.e., zero on some subregions) estimator for coefficient functions in functional linear regression models is developed based on a novel functional regularization technique called “fSCAD”. The nice shrinkage property of fSCAD allows the proposed estimator to locate null subregions of coefficient functions without over shrinking non-zero values of coefficient functions. Addi...

متن کامل

Multiple Fuzzy Regression Model for Fuzzy Input-Output Data

A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...

متن کامل

Sparse Bayesian Non-linear Regression for Multiple Onsets Estimation in Non-invasive Cardiac Electrophysiology

In the scope of modelling cardiac electrophysiology (EP) for understanding pathologies and predicting the response to therapies, patient-specific model parameters need to be estimated. Although personalisation from non-invasive data (body surface potential mapping, BSPM) has been investigated on simple cases mostly with a single pacing site, there is a need for a method able to handle more comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Computation and Simulation

سال: 2019

ISSN: 0094-9655,1563-5163

DOI: 10.1080/00949655.2019.1680676